
C# Code Style
Layout of a class can be found here: C# Class Layout

Use of Static

Only use static when necessary. Please refactor cases you find where we are using static but
shouldn't be or don't need to be.

Properties

It is preferred to use Properties instead of fields, unless a field is necessary.

To accommodate readonly field behavior, we can use a getter-only property. Such a property can
be initialized in the constructor or inline in the definition of the property

=> operator

Using the => operator in a property is shorthand for a one line getter:

This operator can be used in methods for a one line return from the method:

//readonly field that we can make a property
private readonly int someNumber = 42;

//getter only property
//could also be set in the constructor
public int SomeNumber { get; } = 42;

public string MyString {
	get {
 	return "something";
 }
}

//same as above
public string MyString => "something";

https://internal.efilecabinet.com/books/development/page/c-class-layout

??= operator

This operator is used to set a value to a variable if it is null:

If statements and braces

Always use braces for if statements, even if the action is one line:

Ternary statements

Ternary statements should only be used if necessary and when short and one line:

public string GetPaddedString(string input) {
	return $"{ }{input}";
}

//same as above
public string GetPaddedString(string input) => $"{ }{input}";

List<int> numbers = null;
int? a = null;

(numbers ??= new List<int>()).Add(5);
Console.WriteLine(string.Join(" ", numbers)); // output: 5

numbers.Add(a ??= 0); //this adds 0 to the number array AND sets "a" to 0
Console.WriteLine(string.Join(" ", numbers)); // output: 5 0
Console.WriteLine(a); // output: 0

//discouraged
if(condition) return true;

//discouraged
if(condition)
 return true;

//correct usage
if(condition) {
 return true;
}

Regions

Use of regions can help to organize code and make it easier to read. That being said, they can be
overused. Please avoid nesting regions in regions.

It is recommended to use regions for the different sections of a class as described in C# Class
Layout:

//short and sweet example
int num = (b>c) ? b : c;

//bad examples, too long to use this
int num = (condition1 && aReallyLongConditionOfSomeKind && (OtherCondition1 || OtherCondition2)) ?
something : somethingElse;
int num = (condition1 && aReallyLongConditionOfSomeKind && (OtherCondition1 || OtherCondition2)
 && aFewMoreConditions && aFewMoreConditions2) ? something : somethingElse;

#region Constants

const string MY_STRING = "hello";

#endregion

#region Constructors

public MyConstructor() {}

#endregion

#region Properties

public int Num1 { get; set; }
public int Num2 { get; set; }

#endregion

#region Methods

...

https://internal.efilecabinet.com/books/development/page/c-class-layout
https://internal.efilecabinet.com/books/development/page/c-class-layout

Async methods

Async methods should return a Task instead of void (event handlers are the exception). Async
methods should have "Async" at the end of their name so when people use the method, they know
right away that it can/should be awaited.

Use of "var"

Using var can be convenient, but we should only use var when the type of the variable is apparent
in that line of code:

Refactoring

#endregion

etc...

public async Task DoSomethingAsync()
{
 	...code
 await someAsyncThingAsync();
 ...code but no return;
}

public async Task<IEnumerable<object>> GetObjectsAsync()
{
 	IEnumerable<object> objects = await getSomeObjectsAsync();
 ...do other stuff
 return objects;
}

//type is apparent in this line
var objList = new List<object>();

//type is not necessarily known, should explicitly define the variable
var myStuff = await getMyStuffAsync();

//these will get you in trouble, as it may not return what you think...
var someResult = getMyStuffAsync(); //no await actually returns the Task, which would not get flagged as var is
used
var someResult = getMyStuff(); //if this is async, but not named correctly, same issue as above...

We want to be looking for things that can/need to be refactored as we are in files writing new code
or fixing others.

Things to look for would be:

Unnecessary casts or toList
Unnecessary use of static
Lean toward the use of IEnumerable

Test Your Code and Code Reviews

It is required that you test your code, before checking it in and creating a PR.
It is strongly recommended that after testing your code to ensure it is functional, you
review it and try to make it more concise and elegant.
Please have others review your code with you (easy to do if you are pairing) even before
creating a PR

Revision #6
Created 3 November 2022 15:12:21 by Bryce Holloway
Updated 24 June 2024 05:54:42 by Quinn Godfrey

