Http Client

“ you should use either long-lived clients and set

PooledConnectionLifetime (.NET Core and .NET 5+)
or short-lived clients created by
IHttpClientFactory.

*see HttpClient guidelines for .NET - .NET | Microsoft Learn

How?

In the startup file (or Program.cs file in cases, wherever you are doing dependency injection is
where you want to do this), do

builer.Services.AddHttpClient();

This will allow you to dependency inject IHttpClientFactory in other classes, which you can use to
create short lived HttpClient objects whose connections will be cleaned up immediately after
disposal with the following code.

using HttpClient httpClient = HttpClientFactory.CreateClient();

For example in Atlantis Front-End of how we did this, reference the following files:

e Program.cs - Repos (azure.com)

e BaseController.cs - Repos (azure.com)

Another way to do this is by dependency injecting a singeton HttpClient. | (Quinn) had trouble
getting the IHttpClientFactory to dependency inject in functions apps. | kept running into dependency
issues with different nuget packages, but this approach worked great.

In your startup.cs add the following
builder.Services.AddSingleton(() => new HttpClient(

new SocketsHttpHandler { PooledConnectionLifetime = TimeSpan.FromMinutes(2) }

));


https://learn.microsoft.com/en-us/dotnet/fundamentals/networking/http/httpclient-guidelines#recommended-use
https://dev.azure.com/eFileCabinet/Atlantis/_git/Atlantis-FrontEnd?path=/Atlantis-FrontEnd/Atlantis-FrontEnd/Program.cs
https://dev.azure.com/eFileCabinet/Atlantis/_git/Atlantis-FrontEnd?path=/Atlantis-FrontEnd/Atlantis-FrontEnd/Controllers/BaseController.cs

Once you do this, you can add a HttpClient as a parameter to any constructor of a class that is
dependency injected.

The approach this way is different than the one above because you aren't creating short lived
HttpClient s, but instead, you have a singleton HttpClient . This is fine because most functions are
thread safe, but you won't want to dispose of the HttpClient anywhere.

Why?

In the Atlantis Front-End we learned this the hard way. We were spinning up a new HttpClient object
every time a request was sent to Utopia or the Atlantis Back End (which happens for basically
every request to the Atlantis Front End server). When we opted in all users to the new experience,
we got a lot more traffic and starting seeing thousands of failed requests with the following error
message:

An operation on a socket could not be performed because the system lacked sufficient buffer space
or because a queue was full. (utopia.revverdocs.com:443) An operation on a socket could not be
performed because the system lacked sufficient buffer space or because a queue was full.

After researching a bit, we learned that each HttpClient object has it's own connection pool, and
even when you dispose of the HttpClient object, it's connection pool stays alive and keeps all
connections in the pool alive for 2 minutes (this time is configurable though). While the connection
is still alive, it blocks another connection from being created on the same port, and your server
does have a limited number of ports, so if you have a bunch of connections blocking all your ports
from being used, you start to get the error above because there are no ports available to send you
web request out on.

Revision #5
Created 9 January 2024 16:09:12 by Quinn Godfrey
Updated 11 January 2024 20:42:49 by Quinn Godfrey



