
Utopia
Windows File Encryption
Open Source Software List
First Time Setup - Utopia (Work in Progress)
Utopia Articles of Permissions (2020)
Utopia Architecture Notes (2020) Has Changed
File OCR Worker debugging (2021)
Utopia Bundle Installer build instruction
Azure Active Directory SAML Configuration (2020)
OneLogin SAML SSO Configuration
Okta SAML SSO Configuration
Entity Framework Code First
Code First Training Video
Entity Framework Optimizations
Adding a new Email Type
Utopia External Login Instructions and Options
Test Against Production Read Replica
How to run local Utopia over LAN/connect from outside network
How to create a new user license type
Concurrent Licenses

Windows File Encryption
Decryption

download PSTools from: https://docs.microsoft.com/en-us/sysinternals/downloads/psexec
This can be used to run commands as the SYSTEM user
You need to do this to decrypt the database data files / elastic search data files
Cmmand to decrypt folder and all contents as system user: PsExec.exe -i -s cipher /d

/s"fullPathToFolder" (documentation for the cipher command can be found here

https://docs.microsoft.com/en-us/sysinternals/downloads/psexec
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/cipher

Open Source Software List
Correct as of 8/23/2021
Server-Side: ElasticSearch, Postgresql, iTextSharp - LGPL, MailKit, BouncyCastle, AutoMapper,
DeviceId, dotLess.Core, FluentValidation, .Net 5, MimeTypes, NUglify, Chutzpah, Ninject, Serilog,
Swashbuckle, SkiaSharp, OpenIddict, StackExchange.Redis, LigerShark.WebOptimizer
Client-Side: AngularJS, Angular-UI (various sub-libraries), Font-Awesome, Bootstrap, ngDialog,
daterangepicker, Cytoscape, jasmine, jquery, less, lodash, moment.js, signalr, split.js

First Time Setup - Utopia
(Work in Progress)
Step 1: Postgresql

download and install the latest version of postgres from
https://www.enterprisedb.com/downloads/postgres-postgresql-downloads
use the password 'pass@word1' if you don't want to have to change config settings every
time you work on the Utopia project
pgAdmin should be installed with postgresql, and it is a useful to to have on hand to
monitor and access you postgres db
no need to install stack builder

After install is complete - Run the DbMigratorEF and update to latest migration

Apply the "DB InstanceSettings Local Config.sql" file to the local db - this is found in the top level
folder inside the Utopia repo

Step 2: Install Elastic Search
ElasticSearch Installer In Rubex
ElasticSearch Direct Download

Step 3: Install Azure Storage Emulator
Azure Storage Emulator

Step 4: Run the UtopiaBatchWorker to pull
down local accounts

https://www.enterprisedb.com/downloads/postgres-postgresql-downloads
https://account.efilecabinet.net/#/home/state/data/node/2028284/84891661/details/84891675?selectedDetail=nodePreview
https://artifacts.elastic.co/downloads/elasticsearch/elasticsearch-6.8.11.msi
https://go.microsoft.com/fwlink/?LinkId=717179&clcid=0x409

Utopia Articles of
Permissions (2020)
Utopia Articles of Permissions
This file is to explain the over-arching permissions strategy

Node Permissions
1. Every node inherits it's permission set from it's parent by default.
2. a. A node's permission set consists of accumulating all permissions on and above the

given node.
b. The permission set requires that the roles be unique. (One permission per role in the
permission set collection)
c. In the case that more than one permission per role is found, (e.g. group has a
permission on the cabinet and a different permission on the drawer) the closest
permission is taken for evaluation.

3. Only member/personal roles can have the override/enforce permission.
4. The Override/Enforce permission, when checked on a member/personal role, results in all

other permissions being ignored for evaluation.
a. If multiple permissions are found with override checked, the nearest permission is
choosen for evaluation.

5. Pushdown is an action offered when a permission is added, updated, or removed.
a. When taken, it removes all permissions on descendants that have a matching role.

System Permissions
1. These are permissions for a specific role to access certain system features. (e.g. workflow,

manage users, recycle bin, etc.)
2. A particular users' total system permission set consists of any system permissions

assigned to their personal role, or any roles they are a member of.

Non-Inheritable (Only this item) Behavior
Expected behavior for various parent folder with inheritable permission and a sub folder w/ non-
inheritance(Only this item) relationships.

Vocabulary:
Parent = Parent with inheritable permissions
Child = Child with NotInerhitable(Only this item) permission
RWD = Permissions (Read/Write/Delete)

Behaviors:
E = Edit/Rename Child
D = Delete Child

V = View Children of Child
C = Create folder or Upload File into Child
L = Delete children of Child

No Parent
Permissions

Parent-R Parent-RW Parent-RWD

Child-R V VC VCL

Child-RW E EV EVC EVCL

Child-RWD ED EDV EDVC EDVCL

Utopia Architecture Notes
(2020) Has Changed
utopia_diagram.pngImage not found or type unknown

Download link: Utopia Architecture Notes.docx

DataAccess Notes
Contains DB entities
Method Classes

Used for uniform retrieval of data from the database that doesn't require knowledge
of business rules
Used by BusinessLogic to compous various, reusable IQueryables to get informationit
needs for a given operation
Used for updating in case of additional database specific work. i.e. When adding a
DbNode, it sets the CreatedOn and ModifiedOn values prior to adding them to the
DbContext
The primary goals for the Method classes in DataAccess are to make Get, Add,
Update, and Delete reusable and abstract so any change to the Database layer (i.e.
going to NoSQL) will require far less work

Contains common extension methods for any of the DB entities
Contains any classes that are required to do optimized batch queries (i.e. Retrieving
permissions by NodeID, although this could probably be converted to some form of
IGrouping in the future)

BusinessLogic Notes
Contains all Business Logic
Split into three layers: BaseLogic, Logic, FacadeLogic

BaseLogic Layer
Used for sharing reusable logic

Getting permissions for nodes for NodeLogic operations
Used for intercommunication between logics

https://dev.azure.com/eFileCabinet/b3fb963c-f585-4dc2-b679-368aaf429c53/_apis/git/repositories/8ae0b6e7-33b0-423e-9458-dae41ec6fb5b/Items?path=/.attachments/Utopia%20Architecture%20Notes-f9b58d12-337d-4c1d-905a-45f3f40fad81.docx&download=false&resolveLfs=true&%24format=octetStream&api-version=5.0-preview.1&sanitize=true&versionDescriptor.version=wikiMaster

Think Validation operations
These logics act as parent objects for their corresponding Logic layer counterparts.
This allows logic that needs to be reused in both the Logic and Base Logic layers to
be a part of that logic only.

For example: A method in NodeBaseLogic is marked as private, enabling it's
use by NodeLogic due to NodeLogic inheriting from NodeBaseLogic. This
ensures that the method can only be used from these two classes.

This layer is up for debate.
We have also considered a Logic Components section that contains the
reusable logic, as well as a Validation section that contains all the logic
required for validation in a formal format (most cross-logic communication
occurs due to validation requirements).

Logic Layer
Primary layer containing most logic
There is no cross-communication between the Logics
Utilizes Base Logics for reusable logic
Utilizes DataAccess Methods for DB interactions as much as possible

Should avoid accessing the DbContext directly, where possible

FacadeLogic Layer
Used primarily by External Node Providers
A transparent layer to whatever wishes to support external Node Providers (Google
Drive, OneDrive, etc.)
Does no other logic than getting the correct provider for the given ID/Operation
Bypassed by any operation that is not supported for external providers

Currently everything except Node Operations, File Download Operations, and
File Upload Operations bypasses this layer and goes directly to the Logic layer

EventSystem Notes
Lives in BusinessLogic
Consists of 3 parts: Events, Listeners, EventManager
Any call to the EventManager, regardless of location, will initialize the Manager and invoke
all BusinessLogic level listeners. This allows for Audit Logging, EventTrigger Servicing,
Notification Creation, and other "reactions" to system events to occur transparently
Events are handled Asynchronously to allow original requests to process as quickly as
possible while another thread handles all "reactions"
Listeners can be hooked up from upper layers

i.e. SignalR on the App Server

UtopiaSharedClass Notes
Intended to be shared with customers and thus should contain no sensitive information
DataAccess utilizes UtopiaSharedClass mostly to reuse it's Enums

Security
https://cheatsheetseries.owasp.org/cheatsheets/DotNet_Security_Cheat_Sheet.html

https://cheatsheetseries.owasp.org/cheatsheets/DotNet_Security_Cheat_Sheet.html

File OCR Worker debugging
(2021)
This is the instruction how to debug OCR worker.
a. If you no need to use FREngine

1. In Program.cs comment row `FREngineOCRWorker.Initialize(Configuration);
2. Put breakpoints
3. Run File OCR Worker in Debug mode

b. If you need to use FREngine

1. FREngine can't initialize correctly if you trying to run File OCR Worker in debug mode, so
DO NOT PUT BREAKPOINTS AND DO NOT RUN IT IN DEBUG MODE. For debugging
purposes you can print debug information in logs and analyze it.

Utopia Bundle Installer build
instruction

1. Build all components which should be included into installer
1a. If PrizmDoc should be included, PrizmInstaller project should be built as well. Do not
forget to specify PrizmServer license key into the Strings resource of PrizmInstaller.
1b. If ElasticSearch should be included, UtopiaSearchServiceWrapper project should be
built as well

NOTE: For build installer locally you need to make sure that each project that is going to be
installed as a component, that in the appsettings.json both the "RunAsService" needs to be true
and the ConnectionString needs to be updated/accurate to their DB (or Utopia)

2. Open Utopia installer project and navigate to appsettings.json file
3. Specify all components which should be included into installer in this configuration file. By

default it contains configuration for including all Utopia componets, but it can be easily
changed. If some component should be excluded from installer, it just should be removed
from Components section in appsettings.json. This is the appsettings.json structure:

 "BundleTargetDirectory": "[ProgramFilesFolder]eFileCabinet",- Default installation directory for bundle
 "ProjectTargetDirectory": "%ProgramFiles%\\eFileCabinet", - Default installation directory for msi
 "BundleName": "Utopia Bundle", - Bundle name
 "BundleVersion": "1.0.0", - Bundle version
 "ProjectName": "Utopia Solution", - Installer name (will be included into bundle)
 "Components": [- List of components
 {
 "Identifier": "ce279e3c-8c3e-469c-9454-6f4b9035eae8", - Unique component identifier (GUID), it is used by
windows to detect if this component already installed.
 "SourceDirectory": "..\\..\\pgsql", - Root directory with component's files
 "ApplicationFolder": "eFileCabinetDatabaseService", - Target component directory in installation path
 "ServiceName": "eFileCabinet Database Service", - Feature / Service name
 "Required": true, - Required for installation
 "IncludeIntoBundle" : true, - If true then msi will be included into the bundle
 "AfterInstall": { - After install block
 "DirectoryForCheck": "data", - If this directory DOESN'T exist, after install actions will be
executed
 "Actions": [- After install actions

 {
 "File": "bin\\initdb.exe", - File to execute
 "Arguments": "-D ../data -U postgres -A trust", - Execution arguments
 "WaitForExit": true - Sync or async execution (in current example - sync),
 "Local": true - if true then full installation path will be added to the file
 }
]
 },
 "BeforeUninstall": { - Before Uninstall block
 "Actions": [
 {
 "Local": false,
 "File": "cmd.exe",
 "Arguments": "/C \"net.exe stop ^\"eFileCabinet Database Service^\"\"",
 "WaitForExit": true
 },
 {
 "Local": false,
 "File": "cmd.exe",
 "Arguments": "/C \"sc.exe delete ^\"eFileCabinet Database Service^\"\"",
 "WaitForExit": true
 }
]
 }
 "DependsOn": [- List of required for installation components. It WILL NOT be
displayed in Feature select list
 {
 "SourceDirectory": "..\\..\\Prizm", - Root directory with component's files
 "ApplicationFolder": "PrizmDoc", - Target component directory in installation
 "AfterInstall": { - After install block
 "DirectoryForCheck": "PrizmServer", - If this directory DOESN'T exist, after install actions will be
executed
 "Actions": [
 {
 "File": "PrizmInstaller.exe", - File to execute
 "WaitForExit": false - Sync or async execution (in current example - async)
 }
]
 }
 }

3a. If AccusoftPreviewer (PrizmDoc) should be included, do the following steps:
3a1. Put PrizmDoc Server Installer, PrizmDoc Client installer and PrizmInstaller.exe (result of 1a)
into the one directory.
3a2. Rename PrizmDoc Server Installer from PrizmDocServer-<version>.exe to
PrizmDocServer.exe and PrizmDoc Client installer from PrizmDocClient-<version>.exe to
PrizmDocClient.exe
image.pngImage not found or type unknown
3b. If ElasticSearch should be included, do the following steps:
3b1. Download OpenJDK8 (https://github.com/AdoptOpenJDK/openjdk8-
binaries/releases/download/jdk8u292-b10/OpenJDK8U-jdk_x64_windows_hotspot_8u292b10.zip)
and elasticsearch 6.* (https://artifacts.elastic.co/downloads/elasticsearch/elasticsearch-6.8.11.zip)
3b2. Unzip elasticsearch into the new folder
3b3. Unzip java into the folder from 3b2
3b4. Rename jdk8u292-b10 folder to java.
Result of 3b1 - 3b4 should be like on the screenshot below
image.pngImage not found or type unknown
4. Build project (It can takes more than 10 minutes). During the build installer with name
<BundleName>.exe will be created. (This project can't be run, only build action is required)

Local build Issues
Missing assembly: System.Drawing

1. The folder that this assembly sits in is mega hidden. The only way to access it is by
entering the run tool (Windows + R) and then type C:\Windows\assembly\GAC_MSIL

2. Check this repository. You're looking for System, System.Core, System.Drawing, and
System.Windows.Forms

3. Add any missing folders from here

]
 }
]

https://github.com/AdoptOpenJDK/openjdk8-binaries/releases/download/jdk8u292-b10/OpenJDK8U-jdk_x64_windows_hotspot_8u292b10.zip
https://github.com/AdoptOpenJDK/openjdk8-binaries/releases/download/jdk8u292-b10/OpenJDK8U-jdk_x64_windows_hotspot_8u292b10.zip
https://artifacts.elastic.co/downloads/elasticsearch/elasticsearch-6.8.11.zip
https://account.efilecabinet.net/#/home/state/data/node/2028284/216402279/details/216402486?selectedDetail=profile

Azure Active Directory SAML
Configuration (2020)

1. In Azure search for "Enterprise applications"
2. On "Enterprise applications" click "New application". Then click "Non-gallery application"
3. Put whatever you want to the name field (I named it "TestSaml") and press "Add"
4. On your app page select "Single sign-on" and then select "SAML"

image.pngImage not found or type unknown

5. You should see SAML settings and configurations. You will need "Certificate" (base64),
"Login URL (Azure)" and "Azure AD Identifier"

image.pngImage not found or type unknown

6. Go to Rubex -> Hamburger menu -> Admin -> Settings -> Single Sign-On Settings ->
Create Saml Configuration.
Name: Whatever you like
Issuer: Copy contents of "Azure AD Identifier"
Entity ID: Whatever valid URL you like
Saml Endpoint: "Login URL (Azure)"
Certificate: Load "Certificate" file

image.pngImage not found or type unknown

7. Click Create/Update. You will need "Login URL (Rubex)"
THIS URL SHOULD BE HTTPS!!! Otherwise, it will not work with Azure

image.pngImage not found or type unknown

8. Go back to Azure app settings.
Identifier (Entity ID): Put the same Entity ID as in Rubex
Reply URL: Copy "Login URL (Rubex)"
Save everything. You can also press the Test button to test auth from Identity Provider

image.pngImage not found or type unknown

9. To add users to Active Directory search for "Users" in top search bar.
10. To add groups to Active Directory search for "Groups" in top search bar. Set type as

"Security" and add some users during creation.
11. To add users to SAML application go back to the Enterprise application, select users and

groups and add existing AD users

image.pngImage not found or type unknown

12. To import groups select "Single Sign-on" -> "User attributes & claims"

image.pngImage not found or type unknown

13. Then click "add a group claim", check "Customize the name...", Name: "groups" or
something else. The namespace should be empty. Source attribute needs to be checked
for different values, because ID returns... ID! Save everything

image.pngImage not found or type unknown

14. Put the same name ("groups") to Rubex saml settings

image.pngImage not found or type unknown

OneLogin SAML SSO
Configuration

1. Create developers OneLogin Account.
2. After the registration go to Applications page and push Add App button.

Screenshot_2020-07-24 https chevron-dev onelogin com.pngImage not found or type unknown
3. In the search field print "SAML" and select SAML Test Connector (Advanced).

OneLogin_APP.PNGImage not found or type unknown
4. Save application.
5. Navigate to SSO tab. There are three URLs and certificate on this page. We need two of

these URLs (Issuer URL and SAML 2.0 Endpoint (HTTP)) and certificate.
Screenshot_2020-07-24 OneLogin_4.pngImage not found or type unknown

Screenshot_2020-07-24 OneLogin_1.pngImage not found or type unknown

6. Open Rubex on another tab (or browser) and navigate to SAML configuration (Admin ->
Settings -> Single Sign-On Settings).

7. Create new SAML configuration.
8. Fill Issuer field with value from OneLogin Issuer URL, Saml Endpoint with value from

SAML 2.0 Endpoint (HTTP), Entity ID with any url. Aslo specify SAML Attribute
Name for Groups (attribute where all user groups will be listed, usually Group) and
upload OneLogin certificate downloaded on step 5
Image Pasted at 2020-7-24 15-18.pngImage not found or type unknown

9. Save configuration and open it again. Save Login URL from the bottom of this page.
10. Back to OneLogin. Navigate to Configuration tab.
11. Fill Audience (EntityID) with the same URL like in Entity ID Rubex SAML Configuration,

Recipient, ACS (Consumer) URL and Login URL with Login URL from Rubex SAML
Configuration. Save configuration.
Screenshot_2020-07-24 OneLogin_2.pngImage not found or type unknown

12. Navigate to Parameters tab and add Group attribute (Do not forget to select Include in
SAML Assertion)
Screenshot_2020-07-24 OneLogin_3.pngImage not found or type unknown .
Push Save button. On the next window select default value for this attribute (It can be
any user attribute (default or custom)) and save it again.

13. Save all configuration again.

Okta SAML SSO
Configuration
Setting up Okta

1. Go to the Admin Dashboard and create an app integration.
Select SAML 2.0

2. Have the fields match as to what is shown in the below screenshots for the Configure
SAML section

Keep in mind that the Single-sign on URL will be dependent on the environment
you're setting this up for, and the ID at the end will be dependent on your Revver
SAML Config (once the config is created in Revver, edit it and the URL will contain
the ID)
The SAML Issuer Id needs to begin with http://www.okta.com/ but anything after that
is up to you. It does need something and it needs to be unique, but it is something
that you can make up if you'd like image.pngImage not found or type unknown
image.pngImage not found or type unknown

3. Once it's been configured and the app is up and running, you'll need to get the SAML
signing certificate

Inside the app, go to the Sign On tab
image.pngImage not found or type unknown
Find and download the SHA-1 Certificate (note you may need to activate it first. In
which case ignore the warning and continue)
image.pngImage not found or type unknown
You will receive a .cert file. Change the extension type to .cer

Configuring SAML in Revver
1. Configure the name
2. The Issuer is the Issuer Id configured above

You can find this in Okta by going to going to the Sign On tab => Scroll to the
Settings section => Click More Details => Issuer

http://www.okta.com/
https://internal.efilecabinet.com/uploads/images/gallery/2023-04/SKjedHuiLWGZaC0y-image.png
https://internal.efilecabinet.com/uploads/images/gallery/2023-04/ujyGEEbiIF1ikIXG-image.png
https://internal.efilecabinet.com/uploads/images/gallery/2023-04/yP48UhlfrJv1QUZI-image.png
https://internal.efilecabinet.com/uploads/images/gallery/2023-04/Pp3F0tvj6JOQNaxc-image.png

3. The Entity ID will match the Audience Restriction area in Okta's app by going to General
=> SAML Settings => Audience Restriction

4. Be careful when using the SAML Endpoint as Okta has some misleading areas to find this
This can be found in Sign On => Settings => More Details => Sign on URL

5. Leave the rest blank (or configure as needed)
6. For the Signature, Choose File => Select the .cer file (formerly a .cert file) that was

downloaded (see the above Setting Up Okta section)
7. Click save

Here's an example Config:

image.pngImage not found or type unknown

https://internal.efilecabinet.com/uploads/images/gallery/2023-04/iqngbYkPEEjF1Ugu-image.png

Entity Framework Code First
Difference between code first and DB first
In code first approach we have

entity to tables mapping in the C# code instead of .edmx XML file
use a general connection string. We don't need to specify configuration files in the
connection string
We create all entities and mapping manually instead of code generation in DB first
EF can update DB with using our mapping

Entities and mapping
We create entities as general C# objects. Most of them are the same as
Mapping will bind entities to the DB tables. We can apply mapping in two ways:

Use code annotations attributes
Use fluent API with DbModelBuilder
We can combine these two approaches in the same context. (we apply this approach in
the Utopia)
Use separately classes with mapping for each entity. (This approach we used in
workflows.)

mapping example:

Mapping by attributes
public partial class DbNode
 {
 [Key]
 public long Id { get; set; }

 [Required]
 [StringLength(255)]

Mapping by modelBuilder

Mapping by mapping class (used in WF)

 public string Name { get; set; }

 public partial class UtopiaDB : DbContext
 {
 protected override void OnModelCreating(DbModelBuilder modelBuilder)
 {
 // map foreign key.One to many
 modelBuilder.Entity<DbNode>()
 .HasMany(e => e.DbEmailQueueAttachmentNodes)
 .WithRequired(e => e.DbNode)
 .HasForeignKey(e => e.NodeID)
 .WillCascadeOnDelete(false);

 // map foreign key. many to many
 modelBuilder.Entity<DbSearchCriteria>()
 .HasMany(e => e.DbTriggers)
 .WithMany(e => e.DbSearchCriterias)
 .Map(m => m.ToTable("DbTriggerToSearchCriteria")
 .MapLeftKey("SearchCriteriaId")
 .MapRightKey("TriggerId"));

 // map complex primary key
 modelBuilder.Entity<DbTriggerInfoNodes>()
 .HasKey(e => new {e.TriggerID, e.NodeInfoType});
 }
 }

public class DbWorkflowMap : EntityTypeConfiguration<Workflow>
 {
 public DbWorkflowMap(string tablePrefix)
 {
 ToTable(tablePrefix + "DbWorkflows");

 HasKey(t => t.Id);
 Property(t => t.Id).HasDatabaseGeneratedOption(DatabaseGeneratedOption.Identity);

Migration
To update the DB structure we use migration.

Migration is a C# class that contains updating instruction.
EF can generate migrations automatically

How to change structure
1. Add changes to entities and mapping if it needed
2. Create a migration for this changes. To make it automatically create a migration, run this

command in the Package Manager Console:

1. After this command EF will generate C# class for this migration. Please check it

4. To apply migration to the DB you can run next command:

 HasMany(t => t.Owners).WithMany().Map(a => a.MapLeftKey("WorkflowID")
 .MapRightKey("UserID")
 .ToTable(tablePrefix + "DbWorkflowOwners"));

Add-Migration "MigrationNameHere" -ProjectName DataAccess -ConnectionString "data
source=(localdb)\MSSQLLocalDB;initial catalog=UtopiaDB;integrated
security=True;MultipleActiveResultSets=True;App=EntityFramework" -ConnectionProviderName
System.Data.SqlClient -ConfigurationTypeName UtopiaDBMigrationConfiguration

 public partial class InitialMigration : DbMigration
 {
 public override void Up()
 {
 //Some instructions
 }

 public override void Down()
 {
 }
 }

Update DB to the last state

Update/Downgrade db to a specific migration.

Update for updating remote DB's/connections that require authentication:

5. Applied migrations are stored in __MigrationHistory table

PostgreSQL process
There are several things that are different during PostgreSQL Code-First Migration process:

1. Update DB to the last state

2. If Package Manager Console cannot update database, DbMigratorEF project can be used.
Pay attention to constants and main method before running it, main methods are
UpdateDatabase(config) and ScaffoldNewMigration(config)

3. During master merging into feature/OnPremiseMaster new migrations should be deleted
and rescafolded. If "dbo" scheme appears after migration, that means one or more
migrations are not deleted.

update-database -verbose -ProjectName DataAccess -ConnectionString "data
source=(localdb)\MSSQLLocalDB;initial catalog=UtopiaDB;integrated
security=True;MultipleActiveResultSets=True;App=EntityFramework" -ConfigurationTypeName
UtopiaDbMigrationConfiguration -ConnectionProviderName System.Data.SqlClient

update-database -TargetMigration:<Insert migration name> -verbose -ProjectName DataAccess -
ConnectionString "data source=(localdb)\MSSQLLocalDB;initial catalog=UtopiaDB;integrated
security=True;MultipleActiveResultSets=True;App=EntityFramework" -ConfigurationTypeName
UtopiaDbMigrationConfiguration -ConnectionProviderName System.Data.SqlClient

update-database -verbose -ProjectName DataAccess -ConnectionString "data
source={databaseserveraddress};User={databaseUsername};password={password};initial
catalog={schemaName};integrated security=False;MultipleActiveResultSets=True;App=EntityFramework" -
ConfigurationTypeName UtopiaDbMigrationConfiguration -ConnectionProviderName System.Data.SqlClient

update-database -verbose -ProjectName DataAccess -ConnectionString
"Host=localhost;Database=UtopiaDB;Integrated
Security=False;Username=postgres;Password=pass@word1;Port=5432" -ConfigurationTypeName
UtopiaDbMigrationConfiguration -ConnectionProviderName Npgsql

1 visit in last 30 days

Quinn GodfreyImage not found or type unknown
Quinn Godfreycommented Jul 6, 2020 (edited)

Generate SQL for migration:
Update-Database -Script -SourceMigration: [CurrentAppliedMigrationName] -TargetMigration: [MigrationToUpdateToName]

Trevor ChadwickImage not found or type unknown
Trevor Chadwickcommented Jul 21, 2020 (edited)

Update for updating remote DB's/connections that require authentication:
update-database -verbose -ProjectName DataAccess -ConnectionString "data

source={databaseserveraddress};User={databaseUsername};password={password};initial catalog={schemaName};integrated
security=False;MultipleActiveResultSets=True;App=EntityFramework" -ConfigurationTypeName UtopiaDbMigrationConfiguration -
ConnectionProviderName System.Data.SqlClient

Chayston WoodImage not found or type unknown
Chayston Woodcommented Nov 5, 2020

Update DB to the last state - NO VERBOSE
update-database -ProjectName DataAccess -ConnectionString "data source=(localdb)\MSSQLLocalDB;initial catalog=UtopiaDB;integrated

security=True;MultipleActiveResultSets=True;App=EntityFramework" -ConfigurationTypeName UtopiaDbMigrationConfiguration -
ConnectionProviderName System.Data.SqlClient

https://dev.azure.com/eFileCabinet/Utopia/_wiki/wikis/Utopia.wiki/77/Entity-Framework-Code-First#1576322
https://dev.azure.com/eFileCabinet/Utopia/_wiki/wikis/Utopia.wiki/77/Entity-Framework-Code-First#1602414
https://dev.azure.com/eFileCabinet/Utopia/_wiki/wikis/Utopia.wiki/77/Entity-Framework-Code-First#1793254

Bryan ChristensenImage not found or type unknown
Bryan Christensencommented Nov 23, 2020

This message comes through when I went and changed DbNodeClosures ID, needing to drop the restraint and change
the Primary Key name. We were forcing users to Manual to change these, but we can use this script (or a variant of it) to
do the rename automatically.
From Roman Alekhin
@BryanC this script searching constraint name in sys.key_constraints which contains constrains names for all tables. We
just specify table name and constraint type (PK or UK) and receive for example primary key name for specific DB. As
result we will receive correct name for any person's DB.
This will find PK or UK by table name in sys.key_constraints and generate SQL script for dropping it

This just replaces <constraitType> macro to PK

And this drops PK for all tables in list:

private const string BasicScript = @"DECLARE @TableName NVARCHAR(128)
 SELECT @TableName = '<tableName>'
 DECLARE @SQL NVARCHAR(MAX)
 SELECT
 @SQL = 'ALTER TABLE ' + @TableName + ' DROP CONSTRAINT [' + kc.name + ']'
 FROM
 sys.key_constraints kc
 WHERE
 kc.[type] = '<constraintType>'
 AND kc.parent_object_id = OBJECT_ID(@TableName)
 EXEC SP_EXECUTESQL @SQL";

private const string ConstraintTypePlaceholder = "<constraintType>";
private const string PrimaryKeyConstraintType = "PK";
private readonly string _dropPrimaryKeyScript =
 BasicScript.Replace(ConstraintTypePlaceholder, PrimaryKeyConstraintType);

private const string TableNamePlaceholder = "<tableName>";
private void DropPrimaryKeyConstraint(string[] tableNames)
 {
 foreach (var tableName in tableNames)
 {
 Sql(_dropPrimaryKeyScript.Replace(TableNamePlaceholder, tableName));
 }
 }

https://dev.azure.com/eFileCabinet/Utopia/_wiki/wikis/Utopia.wiki/77/Entity-Framework-Code-First#1820538

Code First Training Video
https://youtu.be/goRtW-1c_BY

Entity Framework
Optimizations
Entity framework does not have great performance when dealing with large batches of data. We've
compiled this list as a reference so that our batch operations can be efficient as possible.

Please Read these Articles
https://weblog.west-wind.com/posts/2014/dec/21/gotcha-entity-framework-gets-slow-in-long-
iteration-loops
https://weblog.west-wind.com/posts/2013/Dec/22/Entity-Framework-and-slow-bulk-INSERTs

Disable Auto Detecting Changes
see https://docs.microsoft.com/en-us/ef/ef6/saving/change-tracking/auto-detect-changes

using (var context = new BloggingContext())
{
 try
 {
 context.Configuration.AutoDetectChangesEnabled = false;

 // Make many calls in a loop
 foreach (var blog in aLotOfBlogs)
 {
 context.Blogs.Add(blog);
 }
 }
 finally
 {
 // make sure you re enable AutoDetectChangesEnabled before calling SaveChanges
 context.Configuration.AutoDetectChangesEnabled = true;
 await context.SaveChangesAsync();

https://weblog.west-wind.com/posts/2014/dec/21/gotcha-entity-framework-gets-slow-in-long-iteration-loops
https://weblog.west-wind.com/posts/2014/dec/21/gotcha-entity-framework-gets-slow-in-long-iteration-loops
https://weblog.west-wind.com/posts/2013/Dec/22/Entity-Framework-and-slow-bulk-INSERTs
https://docs.microsoft.com/en-us/ef/ef6/saving/change-tracking/auto-detect-changes

Bloated DbContext
With Entity Framework, you have a dbContext object that tracks all the entities you've read from
the database and changes that have been made to them. If it starts to track too many entities you
can start getting pretty slow performance.

There a several thanks that can be done to address this issue.

.AsNoTracking()
List<DbNodes> childNodes = UtopiaDB.DbNodes.Where(i => i.ParentID = 1).AsNoTracking().ToListAsync();

When you use .AsNoTracking() the entities that get returned will not be tracked by the dbContext.
You should use this when you are querying data from the db that is read only.

Re-Create DbContext Object
The easiest way to get past a bloated dbContext is to create a new dbContext object.

This is difficult in our Utopia solution because create one dbContext object per session, so unless a
new session is created, a new dbContext object cannot be created.

To address this we have added code to to detach all entities from the dbContext

UtopiaDB.DetachEntitiesFromUtopiaDB();

The intent behind this code was to have the same effect as creating a new DbContext object.

Smaller Batches
Typically we've seen better performance when we process things in smaller batches (500 items or
less), call 'SaveChangesAsync()', then detach all entities from the DbContext object, and process
another small batch.

 }
}

Adding a new Email Type
Steps required to add a new email type

1. Add the new email type to the EmailEnum in UtopiaSharedClasses
2. Add the new email template inside of UtopiaSharedResources

You must add both an efilecabinet and a SecureDrawer version of name format:
xx_eFileCabinet.html
xx_SecureDrawer.html

3. Change VS property "Copy to Output Directory" to "Copy Always" on those html files
4. The Hub must be published and any partners must have their own templates added

Utopia External Login
Instructions and Options
Utopia External Login Instructions and Options
This file is to explain how to create an external login page and the options available
External Login Instructions

1. Create an iframe with the src set to "~/#/extLogin/" (replace ~ with host site)
2. Examples:

<iframe src='https://app.securedrawer.com/#/extLogin/'/> <iframe
src='https://express.efilecabinet.net/#/extLogin/'/>

External Login Options and Notes

1. Open a New Tab on Successful Login - this is done by setting the src to
"~/#/extLoginNewTab/". a. This will authorize the user in a new tab and clear out their
login details after success b. This will allow websites to embed a small login snippet and
not a full page iframe. c. Minimum height and width of the iframe is: height="305px"
width="250px"

2. Redirect to Specific Logcation After Login - This is accomplished by appending the desired
location to the src. a. Redirect Instructions: 1. Navigate to the desired redirect location
inside the system. 2. Copy the segment of the URL that appears after the hash '#' 3.
Append that segment to the end of the src URL
"/#/home/state/data/node/490025/1375574/details/1375574" - a location in my account b.
I now copy "/home/state/data/node/490025/1375574/details/1375574" c. and append it
the src URL "https://~/#/home/state/data/node/490025/1375574/details/1375574 " d. Now
anyone logging in through that iframe will be redirected to the navigated location
automatically if they have access to it.

https://%7E/#/home/state/data/node/490025/1375574/details/1375574

Test Against Production
Read Replica
To follow our security policy YOU MUST HAVE TWO OTHER DEVELOPERS OBSERVING
when you access production information

Be sure to step over the listed breakpoints to ensure we don't send notifications to
users in production

Note: The snapshot of production is likely from a previous date. Ensure that your branches state
will work with where production was at.

1. If remote, connect to the VPN
2. Delete the conf.json file from C:\ProgramData\EFC\Configuration
3. Use the DbConnectionConfigurationData string from Prod DB Read Replica found

in the Shared-Development section in LastPass to update the
DbConnectionConfigurationData string in Utopia's appsettings.json.

4. Add a breakpoint to step over await ValidatePasswordAsync(password, dbUser); in the method
ValidateUsernameAndPasswordAsync in
BusinessLogic/Services/AuthenticationService.cs

5. Add loginRequirementsStatus.UserSettingMFARequirementMet = true; below where the
loginRequirementsStatus gets set in the method
GetUserLoginRequirementsStatusAsync in
BusinessLogic/Services/AuthenticationService.cs

6. And add a breakpoint to step over: PopulateUserSettingLoginRequirements,
PopulateSecurityPolicyStatuses, await PopulateRolesFailingOtherRequirementsAsync,
InvalidateGroupRolesWhereUserRoleIsFailing in the method
GetUserLoginRequirementsStatusAsync in
BusinessLogic/Services/AuthenticationService.cs

How to run local Utopia over
LAN/connect from outside
network
Why
At times it may be helpful to connect to your local instance of Utopia from other devices to be able
to debug/test:

Mobile device
Apply garbage
SalesForce
Other integrations

To name a few. Also, it just feels cool.

How to setup Utopia over LAN
The key here is to set up IIS properly and then open whatever ports are needed on your firewall.

1. Lets first get your local IP
1. Run command prompt
2. Type ipconfig
3. Copy and save your IPv4 Address

image.pngImage not found or type unknown
2. Inside of Visual Studios, click on the IIS Express dropdown arrow and select Utopia Debug

Properties
image.pngImage not found or type unknown

3. Scroll down until you see App URL. Replace localhost with the saved IPv4 Address
image.pngImage not found or type unknown

4. Close the window
5. Find the .vs hidden folder of the Utopia solution and then go into Utopia\Config and open

applicationhost.config
1. For me it's C:\src\Utopia\Utopia\.vs\Utopia\config\applicationhost.config

6. Inside of applicationhost.config, find where it sets up it's bindings

1. Usually around line 162
2. Searching for binding and it should go straight to it

7. Duplicate the two lines that bind the two ports to localhost. Replace localhost with your
saved IPv4 Address on those duplicated lines.

image.pngImage not found or type unknown
8. Next, open up the ports inside of your windows firewall

1. You will need to open up port 44334 for both UDP and TCP
Actually not sure if you need both but I did just in case
In some instances you may need to open 57584 as well

I had to to be able to connect from the company mac via the desktop
client (it was yelling at the not trusted certificate)

Allow the connection
Have Domain, Private, and Public all checked
Give it a meaningful name
image.pngImage not found or type unknown

9. Close out Visual Studio completely
10. Open Visual Studio as administrator

image.pngImage not found or type unknown
11. Finally, open Utopia and run it with IIS Express

Note:
If you get an error that looks like this

image.pngImage not found or type unknown
Then you need to shut down Visual Studio completely and relaunch it as
administrator

How to connect from outside network
This one is actually really simple. All you need to do is do some port forwarding. I'm not going to
get into how to do this since each router is unique (basics is to log into the router and go to
advanced).

Note:
To connect, make sure the device you're connecting from is NOT on the local network
You'll need your external IP

Replace the internal IP with the external one on the connecting device

https://internal.efilecabinet.com/uploads/images/gallery/2022-10/4j8v0nHLlhkpDkKq-image.png
https://whatismyipaddress.com/

How to create a new user
license type

All changes are made in the Utopia solution in the Utopia git repository
See this PR for the Compliance License for a previously implemented example

C#
UtopiaSharedClasses\Enums\UserLicenseEnums.cs

Add a value to the UserLicenseEnum enum
Add a value to AllowedNodeTypesByUserLicenseType dictionary (if applicable)

UtopiaSharedResources\Utilities\UserLicenseUtilities.cs
Instantiate a new UserLicense in the UserLicenses static method

UtopiaSharedClasses\Enums\AccountFeatureEnum.cs
Add a value to the AccountFeatureEnum enum
Add a value to the UserLicenseAccountFeatures array. The licenses in the UI will display in
this order.
Add a value to the MeteredAccountFeatures array (assuming that the license will be
metered)
Add a value to these other arrays (if applicable)

UserLicenseAssignmentFallbackOrder
RoleLicensesWithConcurrentUserSupport
AdvancedOCRAccountFeatureTypes
MeteredOCRAccountFeatureTypes
UsageFeatureTypes

UtopiaSharedResources\Language\EnumDisplayNames.resx
Add a resource value for the title of the license

The name must be AccountFeatureEnum_{name-of-account-feature-enum} , e.g.
AccountFeatureEnum_ComplianceUserLicense

UtopiaSharedClasses\Classes\AccountClasses.cs
Add an int property to the AccountUsage class

BusinessLogic\Services\AccountService.cs
In the GetAccountReportAsync method, update the assignment to the userCountLookup
dictionary to also add the counts of the new license type

https://dev.azure.com/eFileCabinet/Utopia/_git/Utopia/pullrequest/5024

BusinessLogic\Services\AccountUsageService.cs
In the GetUsageAsync method, add a line to set the count of the new license

DataAccess\Methods\RoleMethods.cs
In the GetUserLicenseCountLookupAsync method, add a line to set the count of the new
license

JavaScript
wwwroot\Client\app\accountFeature\accountFeatureServices.js

In the determineFeatureUsageMessage function, add a switch case for the new license

wwwroot\Client\app\auth\authFactories.js
In the getUserRoleOnAccount function, add a block that returns a role for the new license if
one exists

wwwroot\Client\app\permission\permissionServices.js
In the getPermissionPresets function, add a block that sets the permission presets of the
new license

wwwroot\Client\app\roles\roleServices.js
In the isUserLicenseType function, add the new license to the OR clause
Add a function called is{name-of-license-type}UserLicenseType

Concurrent Licenses
This feature is primarily used by Caselle

The concurrent license count is actually based off the value added to the Full User License
feature.

For example, an account with 4 concurrent licenses will have the Concurrent License
feature applied to the account with the value as null, and the Full User License
feature with the value of 4.
An account with the concurrent license feature can add more full users to the
account than the feature value, but they will only be able to have 4 of those full
users logged in at a time.
Currently the account can only have the Full User License feature with the
Concurrent License feature. If there comes a time that we'd like to allow different
user types the code would need to be adjusted.

A single user is allowed to log into multiple applications as one concurrent license user.
The external applications that should be part of concurrent licensing need to have their
application IDs added to the Azure configuration setting
Utopia:Settings:ExternalClientApplicationIds

If we ever decide to enforce concurrent licensing for the mobile app or other internal
apps those will also need to be added in the code.

The bulk of the logic for concurrent licensing is in AuthenticationService.cs. See the
method GetRolesFailingConcurrentLicensingAsync.

