
Integromat
Getting Started
eFileCabinet App
Remote Procedure Calls (RPCs)
Modules

Getting Started
Setup

1. Head to integromat.com
2. Login

Username: development@efilecabinet.com
Password: Ask Trevor

https://www.integromat.com/
mailto:development@efilecabinet.com

eFileCabinet App
Click here to see our app.

An integromat app is composed of several components. The important ones are:

Base
This is the parent structure that all modules and remote procedures inherits from, if
you notice that every module is using a header or requiring some other piece of
information, then place it here

Connections
It is possible to create more than a single connection if a module requires something
unique
The active connection is the one where oauth2 does it's magic
The current connection is setup in a way that it fetches the token and saves it inside
of memory.

To access this token, call connection.accessToken
The "Common Data" section at the bottom allows us to hold parameters that we
need, but wish to keep private such as the base64 encoded access string

This will need to be adjusted after we setup an integromat specific connection
Currently it is set up to renew the connection when there is less than one minute
remaining

See: "condition": "{{if(data.accessToken, data.expires < addMinutes(now, 1), true)}}"
The "Parameters" tab is what indicates the user input. In this case, the user's
username and password that will be used during authentication

Modules
Modules are generally set up in a way to accomplish a single task, not single calls to
our api
The "Communication" tab is where it will make it's calls to our api, save and
manipulate temporary data, and perform basic logic

Any logic performed must follow the IML pattern see IML functions in the
integromat documentation

The "Static Parameters" tab allows for user input only and is rarely used
To use parameters (static or mappable), simply call parameter.ParameterName

The "Mappable Parameters" tab allows for user input in a more fluid way. It also
allows for Remote Procedures (RPC) to be called, allowing a better user experience.

https://www.integromat.com/app/efc-local-608205/1
https://docs.integromat.com/apps/app-structure/iml-functions

This is what should generally always be used
I've noticed that it is easier to start here during module creation as you'll
probably need to use or create a RPC to use or fetch additional input
To use parameters (static or mappable), simply call parameter.ParameterName

Remote Procedures (RPC)
Are sub modules that can are ran while the user is selecting parameters, before the
module itself is ran
They are used to fetch input needed to run the app's module

IML Functions
IML is a feature that allows you to write your own JavaScript functions and execute
them inside IML expressions to process data
IML functions are disabled by default. Luckily for you, I've already contacted them to
unlock it.

Remote Procedure Calls
(RPCs)
What are they?

Think of RPCs as sub modules that are called to help the main modules get the inputs they
need
They CAN NOT be called inside the module itself, instead, they are called inside of the
"Mappable Parameters" tab

How do I use them?
List Files

Call this using rpc://listFolders
List Folders

Call this using rpc://listFiles

List Files
Communication
Each number in the following ordered list is referring to a block in code

1. This block grabs the parent workspace id and initializes a counter so that the RPC will
know where it currently is when it iterates in block 2. It also determines the last string in
the path so that block 2 knows when it is done iterating

2. This block iterates through each string in the path to get the nodeId by it's name
It knows it is done when the lastNamePath is equal to its currentName
This "condition": "{{if(parameters.path !== '/', true, false)}}" will prevent it from running
when there is no path entered so as to save an API call

3. This will show the user the next layer in the path

Notice

Our API responds with an array instead of an object, as a result Integromat does not know
how to output the data

This means that we need to iterate through each element in the array and output
the information we require
This "file": "{{if(item.systemType === 7, true, false)}}" is what determines if a proper file
has been selected. If it evaluates to false then the module cannot proceed and will
run the RPC again until it returns true

List Folders
Communication
Each number in the following ordered list is referring to a block in code

1. This block grabs the parent workspace id and initializes a counter so that the RPC will
know where it currently is when it iterates in block 2. It also determines the last string in
the path so that block 2 knows when it is done iterating

2. This block iterates through each string in the path to get the nodeId by it's name
It knows it is done when the lastNamePath is equal to its currentName
This "condition": "{{if(parameters.path !== '/', true, false)}}" will prevent it from running
when there is no path entered so as to save an API call

3. This will show the user the next layer in the path

Notice

"response": {
 "iterate": "{{body}}",
 "output": {
 "label": "{{item.name}}",
 "value": "{{item.id}}",
 "file": "{{if(item.systemType === 7, true, false)}}"
 }
}

"response": {
 "iterate": "{{filterFolders(body)}}",
 "output": {
 "label": "{{item.name}}",

Our API responds with an array instead of an object, as a result Integromat does not know
how to output the data

This means that we need to iterate through each element in the array and output
the information we require
An IML function is called on the body to filter out all file node objects from the body

 "value": "{{item.id}}"
 }
}

Modules
As of 10/06/2020, we have 4 modules built:

Download a file
From eFileCabinet to another source
Uses connection "eFileCabinet oauth2"

Required Inputs Using Mappable Parameters
File

A way for the user to dig into the file structure to find a valid file. This uses the RPC
List Files

Interface
Note that this tab is only used when you need to specify to other modules what your output will be

Data
This is the content of the data (file)that is going to be sent

File Name
This is the name of the data (file) that is going to be sent

File Size
This is the size of the data (file)that is going to be sent

Communication
Each number in the following ordered list is referring to a block in code

1. This block grabs the parent workspace id and initializes a counter so that the module will
know where it currently is when it iterates in block 2. It also determines the last string in
the path so that block 2 knows when it is done iterating

2. This block iterates through each string in the path to get the nodeId by it's name
It knows it is done when the lastNamePath is equal to its currentName
This "condition": "{{if(parameters.path !== '/', true, false)}}" will prevent it from running
when there is no path entered so as to save an API call

3. This block uses the pathId and the accessToken to makes a call to our API so that we can
GET the file to download

https://dev.azure.com/eFileCabinet/Utopia/_wiki/wikis/Utopia.wiki/115/List-Files

Upload a file
From another source to eFileCabinet
Uses connection "eFileCabinet oauth2"

Required Inputs Using Mappable Parameters
Directory

This is where the user selects the Folder or Drawer that the file is to be saved in
This uses RPC List Folders
Notice that the name is called path, this is true because the value being return from
the RPC is in format abc/def/ghi

File Name
This will auto fill if the user "Source File" - (Other module input)

Data
The file that will be uploaded and should be auto filled when another module links to
it

Communication
Each number in the following ordered list is referring to a block in code

1. This block grabs the parent workspace id and initializes a counter so that the module will
know where it currently is when it iterates in block 2. It also determines the last string in
the path so that block 2 knows when it is done iterating

2. This block iterates through each string in the path to get the nodeId by it's name
It knows it is done when the lastNamePath is equal to its currentName
This "condition": "{{if(parameters.path !== '/', true, false)}}" will prevent it from running
when there is no path entered so as to save an API call

3. This block processes the node that the user has input by selecting the last node. It then
saves this id into a temp variable called "pathId"

4. This block attempts to create the file in the requested parent node
If there is an error (as seen in the response body), then it will take the
suggestedName in the Batch Object name for block 3

5. Conditional block: This block will only run if the suggested name received in block 2 does
not equal the file name parameter received

If this runs it will create the node with the suggested name
6. Now that the node has been created it will begin the upload process. This block will

FileUpload POST to retrieve the uploadIdentifier
7. With the uploadIdentifier retrieved, this block will start the data upload
8. Once the data has finished uploading, it will finalize by sending "complete": true

https://dev.azure.com/eFileCabinet/Utopia/_wiki/wikis/Utopia.wiki/117/List-Folders

Create a node
Create a new Folder, Drawer, or Cabinet
Uses connection "eFileCabinet oauth2"

Required Inputs Using Mappable Parameters
Name

The name of the new node
Node

A way for the user to select the parent Cabinet, Drawer, or Folder
This uses a mappable for of input, where the user just clicks the node in question,
starting with the workspace and working down until they've selected the parent
node in question

This uses the RPC List Folders

Communication
Each number in the following ordered list is referring to a block in code

1. This block grabs the parent workspace id and initializes a counter so that the module will
know where it currently is when it iterates in block 2. It also determines the last string in
the path so that block 2 knows when it is done iterating

2. This block iterates through each string in the path to get the nodeId by it's name
It knows it is done when the lastNamePath is equal to its currentName
This "condition": "{{if(parameters.path !== '/', true, false)}}" will prevent it from running
when there is no path entered so as to save an API call

3. This block uses the pathid found in block 2 to make a call to our API so that we can fetch
the systemType. It then saves that in to temp variable "parentSystemType".

4. This block starts by figuring the systemType of the new node, then it will POST the new
node using the pathId, systemType, and name

If the parent is a workspace, it will create a cabinet
If the parent is a cabinet, it will create a drawer
If the parent is a drawer, it will create a folder
If the parent is a folder, it will create a folder

Rename a node

https://dev.azure.com/eFileCabinet/Utopia/_wiki/wikis/Utopia.wiki/117/List-Folders

Rename a File, Folder, Drawer, or Cabinet
Uses connection "eFileCabinet oauth2"

Required Inputs Using Mappable Parameters
This begins with a Select dropdown, where the user can select either a file or a folder

File - calls RPC List Files
Folder - calls RPC List Folders

Name
The name they want the new item to be called

Communication
Each number in the following ordered list is referring to a block in code

1. This block grabs the parent workspace id and initializes a counter so that the module will
know where it currently is when it iterates in block 2. It also determines the last string in
the path so that block 2 knows when it is done iterating

2. This block iterates through each string in the path to get the nodeId by it's name
It knows it is done when the lastNamePath is equal to its currentName
This "condition": "{{if(parameters.path !== '/', true, false)}}" will prevent it from running
when there is no path entered so as to save an API call

3. This block uses the pathId found in block 2 to update the node using PUT with the
gathered name in the body

https://dev.azure.com/eFileCabinet/Utopia/_wiki/wikis/Utopia.wiki/115/List-Files
https://dev.azure.com/eFileCabinet/Utopia/_wiki/wikis/Utopia.wiki/117/List-Folders

