React Code Style
and Architecture

e Future Articles

o Official React Documentation

e File and Folder Structure

e Code Ordering Style

e Custom Hooks Style Guide

e Conditional Rendering

e App Wide State

e Events and Listeners

e Loading Inidicator

e Localization

e Routing

e Permission and Feature Validation

e Virtualization and Infinite Scrolling

e Modals

Future Articles

The following are items that we would like to have documented in the future. Most have not been
documented because they are awaiting design.

e ADA Compliance

Uniform Exception Handling

Infinite Scrolling

Standardized Loading Indicator / State
Localization

UseForm

Official React
Documentation

e https://beta.reactjs.org/learn

e beta.reactjs.org has much more modern docs. Most all of the examples on reactjs.org use
class components rather than function components.

It is recommended to read most of articles in the Learn section of https://beta.reactjs.org

https://beta.reactjs.org/learn
https://beta.reactjs.org/learn

File and Folder Structure

File and Folder Structure should match the Ul as closely as possible.

There are cases where hooks, interfaces, enums, or components need to shared in multiple places
and they should be placed in the following folders.

e api

o hooks to send requests to the backend
e hooks

o other custom hooks (like useForm)
o types

o files for interfaces and enums

Code Ordering Style

Import Ordering:

React

Packages

EFC packages
Internal references
CSS

e whH

1. Expanding of Props
e const { recentNodes, maxRowsToDisplay } = props;
2. React Hooks (except useEffect)
e useState, useContext, etc
3. Custom Hooks
e useSomeApi, useForm, etc
4. Other Variables and Methods
e can be intermixed
5. Effects (useEffect)
. return statement

)]

The following is an example of how properties are ordered in a component function
export const RecycleBin = (props: RecycleBinProps) => {
const { active } = props;

const [showConfirmation, setShowConfirmation] = useState(false);

const [recycleBinltems, setRecycleBinltems] = useState<RecycleBinltem[]>([]);
const [selectedltems, setSelectedltems] = useState<RecycleBinltem[]1>([1);

const { getltemlcon, restoreRecycleBinlcon, recycleBinlcon } = uselcons();
const { getRecycleBinFiltered, purgeFromRecycleBin, restoreFromRecycleBin } = useRecycleBinApi();

const { t } = useTranslation('RecycleBin');

const openPurgeConfirmation = () => setShowConfirmation(true);
const closePurgeConfirmation = () => setShowConfirmation(false);

const getRecycleBinltems = () => {
getRecycleBinFiltered(initFilterProps).then((items: RecycleBinltem([]) => {
setRecycleBinltems(items);

1)

const onSelectltems = (items: RecycleBinltem[]) => {

setSelectedltems(items);

i

const getlcon = (item: RecycleBinltem): EfclconProps => {
const fileExt = item.node.name.slice(item.node.name.lastindexOf('."));
return getltemlcon(item.node.systemType, fileExt);

It

const purgeSelectedltems = () => {

openPurgeConfirmation();

It

const purgeltem = (item: RecycleBinltem) => {
if (litem) {
setSelectedltems([item]);
openPurgeConfirmation();

}
i

const confirmPurge = (confirmed: boolean) => {
closePurgeConfirmation();

if (Ilconfirmed) {
purgeFromRecycleBin(selectedltems.map((item) => item.node)).then(refreshList);

}
i

const restoreSelectedltems = () => {

restoreFromRecycleBin(selectedltems.map((item) => item.node)).then(refreshList);

It

const restoreltem = (item: RecycleBinltem) => {

restoreFromRecycleBin([item.node]).then(refreshList);

It

const refreshList = () => {
getRecycleBinltems();
setSelectedltems([]);

5

const columns: (string | EfcTableColumninfo)[] = [
{ name: 'node.name’, searchBy: true, displayName: t(RecycleBinKeys.Name), uselcon: geticon },
{ name: 'dateDeleted', searchBy: true, displayName: t(RecycleBinKeys.DateDeleted), isDate:true },

{ name: 'path’, searchBy: true, displayName: t(RecycleBinKeys.Path) },

const bulkActions: EfcCallToActionInfo[] = [
{ text: t(RecycleBinKeys.Purge), icon: recycleBinlcon, onClick: purgeSelectedltems },

{ text: t(RecycleBinKeys.Restore), color: 'primary’, icon: restoreRecycleBinlcon, onClick: restoreSelectedltems },
I;

const contextActions: EfcCallToActionInfo[] = [
{ text: t(RecycleBinKeys.Restore), icon: restoreRecycleBinlcon, onClick: restoreltem },

{ text: t(RecycleBinKeys.PurgeForever, 'Purge Forever'), icon: recycleBinlcon, onClick: purgeltem },
I

const confirmationCTAs: EfcCallToActionInfo[] = [
{ text: t(RecycleBinKeys.Cancel), color: '‘primary', emphasis: 'med', onClick: () => confirmPurge(false) },

{ text: t(RecycleBinKeys.Purge), color: 'primary', emphasis: 'high', onClick: () => confirmPurge(true) },
I

useEffect(() => {
if (Mactive) {
getRecycleBinltems();

}
}, [activel);

return (
<div className='my-2'>
<Suspense>
<FullTable data={recycleBinltems} columns={columns} bulkActions={bulkActions}

contextActions={contextActions} onSelect={onSelectltems} />

{recycleBinltems.length == 0 &&
<Text>
{t(RecycleBinKeys.EmptyMsg)}

</Text>

<Modal toggle={closePurgeConfirmation} title={t(RecycleBinKeys.AreYouSure)}

isOpen={showConfirmation} ctas={confirmationCTAs}>

<Modal.Body>

<Trans t={t} count={selectedltems.length} i18nKey={RecycleBinKeys.PurgeConfirmMsg} >
{{ count: selecteditems.length }} files will be permanently removed from your account and will

not be able to be recovered.

</Trans>
</Modal.Body>
</Modal>
</Suspense>

</div>

Custom Hooks Style Guide

When writing custom hooks follow guidelines as described in Code Ordering Style.

On top of code ordering, the following guildlines should also be followed

e return object should not have any inline functions. Functions on the return object should
be declared above the return statement like in the following example.
o export const useFileUploadApi = () => {
const deleteAllFailedFileUploadsAsync = async () => {
const resp: AxiosResponse = await Api.delete('api/FileUpload/Failed/All');
return resp.data as UtopiaUploadFileResponsel[];
i
const deleteFailedFileUploadAsync = async (nodeld: string, uploadldentifier: string) => {
const resp: AxiosResponse = await
Api.delete(" api/FileUpload/Failed?nodeld=${nodeld}&uploadldentifier=${uploadldentifier}");
return resp.data as UtopiaUploadFileResponse[];
i
const queryFailedFileUploadsAsync = async (start: number, count: number) => {
const resp: AxiosResponse = await

Api.get("api/FileUpload/Failed?start=${start}&count=${count}");
return resp.data as UtopiaUploadFileResponsel];
ki
return {
deleteAllFailedFileUploadsAsync,
deleteFailedFileUploadAsync,
queryFailedFileUploadsAsync
}i
Dt

https://internal.efilecabinet.com/books/atlantis/page/code-ordering-style

Conditional Rendering

React has a tutorial on different ways to conditionally render JSX and can be found here.

Conditionally Including JSX

Irl%ba QB@QE\Q type unknown

Doing it this way is discouraged

Conditional (ternary) operator (? :)

Irﬁmga g)eap]mg type unknown

This is how you do 'if else' statements
Avoid having nested ternary operators
Nested ternary operators may indicate you need create more components

It is okay to have multiple components to the same file (so don't hesitate to add more if improves
maintanibility)

Logical AND operator (&&)
im@geopRgnd or type unknown

Equivalent to nglf in angularjs

Style

Ternary Operators can get makes things look messy quick, so it's important to style it
appropriately.

The following is example of how one might use a ternary on two larger pieces of JSX.

Notice how the ':' is the only thing on the line to really help differentiate what is the if block and
what is in the else block.

Notice also the use the && operator throughout the JSX.

https://beta.reactjs.org/learn/conditional-rendering
https://internal.efilecabinet.com/uploads/images/gallery/2022-11/NiSzPqiDIZoMmtsa-image.png
https://internal.efilecabinet.com/uploads/images/gallery/2022-11/zd4oa2xaKWCJBBja-image.png
https://internal.efilecabinet.com/uploads/images/gallery/2022-11/DpYOJ31QL1AS1DD8-image.png

return (
<>
<Card.Title tag={Link} to={RoutePath.Portfolios} className='no-decoration' size='lg' bold icon={{
...icons.favoriteslcon, pull: 'left', color: colors.utopiaHeart, size: 'md' }}>
{ !"favoritesPortfolio ? favoritesPortfolio.name : 'Favorites' }

</Card.Title>

{(("isLoading || !'errorLoading || luser)) ?
<>
{(!tisLoading || 'user) &&
<SkeletonTheme enableAnimation height='24px"' width='85%">
<Skeleton count={NUM_NODES/2} className='mb-3 ms-4 me-4'/>

</SkeletonTheme>

{!errorLoading &&

<Card.Text>There was an issue when loading your favorite nodes.</Card.Text>

{('favoritesPortfolio) &&
<Card.Text>No portfolio has been set as the Favorites portfolio. Right-click a portfolio in the My
Portfolios page to set a Favorites portfolio.</Card.Text>

}

{(favoritesPortfolio?.nodes.length == 0) &&
<Card.Text>No favorites selected yet. Right-click files or folders and choose “Add To Portfolio” to

add to Favorites.</Card.Text>

}

{favoritesPortfolio?.nodes.slice(0, NUM_NODES).map((node) => (
<Card.Link key={node.id} tag={Link} to={ ${RoutePath.GoToNode}/${node.id} "}
className='ms-4 my-3'icon={{ ...icons.getltemlicon(node.systemType, node.fileInfo?.fileExtension), size: 'md'
1>
<Tooltipltem innerClassName='truncated-text' id={node.id} message={node.name}>
{node.name}
</Tooltipltem>
</Card.Link>
N}

{(!'favoritesPortfolio && favoritesPortfolio.nodes.length >= NUM_NODES) &&
<div className='d-flex justify-content-center'>
<Button color="'primary' emphasis='low' onClick={() => navigate(RoutePath.Portfolios)}>See
all</Button>

</div>

App Wide State

We implement app wide state by using Context.

Context

reactjs.org has a tutorial for Context and the official documentation can be found here.

In Atlantis

We currently use Context in Atlantis. One example of this is AuthContext. It currently stores user
info that can be used across the app.

https://beta.reactjs.org/learn/passing-data-deeply-with-context
https://beta.reactjs.org/apis/react/useContext#usecontext
https://dev.azure.com/eFileCabinet/Atlantis/_git/Atlantis-FrontEnd?path=/Atlantis-FrontEnd/Atlantis-FrontEnd/ClientApp/src/auth/AuthContext.ts

Events and Listeners

Events are typically handled using React's useEffect hook.

useEffect

React has a tutorial as well as documentation that can be found here.

Use effect allows you to run a function every time a state or context property changes.

The following example will run a function every time the user object is updated,

useEffect(() => {
if (Nuser) {
/| do something here

}

}, [user]);

Lifting Up State

In some cases, you may not even need to use useEffect.

You can lift up state as described in this article.

When a parent component is controlling state, and passing in handler functions as props to
children components, may eliminate the need for an event altogether.

Window Event Listeners

We use window.addEventListener is several places. For example, listening for posted messages
from the Utopia iframe or listening for resize events to know when we the screen size has reached
a new bootstrap breakpoint. Functions that run as callbacks for these event listeners cache state
variables, so you can do a couple things to account for this.

1. Re-setup the event listener every time a state variable changes

useEffect(() => {
window.addEventListener('resize', onScreenResized);
return () => {

return window.removeEventListener('resize', onScreenResized);

https://beta.reactjs.org/learn/synchronizing-with-effects
https://beta.reactjs.org/learn/synchronizing-with-effects
https://beta.reactjs.org/learn/sharing-state-between-components%E2%80%8B

}, [screenSize]);

2. Use the functional version of the setter to get the current value of the state variable

setScreenSize(currentScreenSize => {
if (currentScreenSize '= newScreenSize) {
return newScreenSize;
}
else {
return currentScreenSize;
}
b

The top answer to this stack overflow question describes some the different ways you can
account for this.

https://stackoverflow.com/questions/60540985/react-usestate-doesnt-update-in-window-events

Loading Inidicator

We found a cool react component from react-loading-skeleton called Skeleton.
In its props, it lets you tell it how many blurry placeholder items you want it to display.
We use it when waiting for items in a list to load from the back end.
<SkeletonTheme enableAnimation height='24px"' width='85%"'>
<Skeleton count={someConfigurableNumber} className='mb-3 ms-4 me-4'/>

</SkeletonTheme>

ilﬁ’ﬂa@geopﬂ)gnd or type unknown

https://internal.efilecabinet.com/uploads/images/gallery/2022-11/dlsraQBbzpPKDNT5-image.png

Localization

e useSafeTranslation hook

o Pass in the "filename / namespace" as the parameter _
o const { t } = useSafeTranslation(TranslationFiles.RecycleBin)
o All "filenames / namespaces" are stored in the enum TranslationFiles (which
currently can be found in the same file as the useSafeTranslation hook)

e Define string lookup keys as enums
o export enum RecycleBinTKeys {
Name = 'name’,
DateDeleted = 'dateDeleted’,
Path = 'path’,
Purge = 'purge’,
PurgeForever = 'purgeForever’,
Restore = 'restore’,
Cancel = 'cancel’,
ForceCheckln = 'forceCheckln’,
PurgeConfirmMsg = 'purgeConfirmMsg’,
AreYouSure = 'areYouSure',
EmptyMsg = 'emptyMsg’,
PageTitle = 'pageTitle',
}
o Need to be single strings with no spaces.
o enum name should be match the name of the namespace it will be used for, and
have TKeys appended to the end.

o All TKey enums are in currently in the same file as the useSafeTranslation hook.

e Use the "t" method
o t(RecycleBinTKeys.Name)
o If the key doesn't exist it will be added
o Must run the code and navigate to location

e |locales folder contains all the string translations
o Namespace matches the name of the json file

age noffpund or type unknown

o returnlready?null{(/alyourjsx-here X/

o This is striked out becuase we have not needed to do this. We're not sure what fixed
the original issue but it's not needed anymore, but I've left this here just in case we

run into it again in the future.

Plurals

see i18n documentation here. Plurals are useful when the copy needs to change slightly when you
have multiple items, for example, when you are deleting 2 items instead of one, you want to add
an 's' to the end of a word to make it plural.

e recycle bin area has a purge modal that does this.

Nesting

see i18n documentation here. Nesting is useful when you need pass multiple values into the copy,
for example, when you the copy indicates how many file uploads and form fills are in a document

request that is assigned to you.

https://www.i18next.com/translation-function/plurals
https://www.i18next.com/translation-function/nesting#passing-options-to-nestings

Routing

There is a specific url route for every page and tab within a page in Atlantis. Each has a specific url
route. When needed, we also have routes for specifc states of a view or tab.

For example, when viewing a document request you are taken to the document request page, with
the Inbox tab selected, but the content that is shown is not the inbox but instead, the document
request to be completed. There is also a third state of the inbox tab creating a new document
request.

The url routes for each of these states in this example are as follows:

e /docrequests

e /docrequests/inbox

e /docrequests/new

e /docrequests/inbox/:id

Where is routing setup?

In the app.tsx file there is a LayoutRoutes function component. In it, all the different routes in the
app are defined.

You will notice that we verify the logged in user has permission to go to the route before we
actually add it. This ensures that they will be taken to a not found page in the case they are
accidentally routed somewhere they shouldn't have permission to.

In the LayoutRoutes component routes have been grouped by the page they are on.

In the app component (also in app.tsx) you will also notice that we do not render the layout route
components until the logged in users account settings and system permissions have been loaded
to ensure routes are not rendered until we can validate if they have permission to navigate to a
specific route.

RoutePaths.ts

In the RoutePaths.ts file there are many enums (and types) related to routing.

RoutePath type

The RoutePath type represents each and every route that can be navigated to in Atlantis. The
RoutePath type is actually not an enum, though in usage it operates as one. It is a defined type and
is actually a concatenation of many enum types. RoutePath is composed of an enum that
represents the route of each page, unless the page doesn't have tabs in which case the route is

part of an enum name SingleRoute. For example, we have a DocumentRequestRoutePath that currently
looks like the following.

export enum DocumentRequestRoutePath {
DocumentRequestindex = '/docrequests’,
DocumentRequestinbox = '/docrequests/inbox’,
DocumentRequestNew = '/docrequests/new’,
DocumentRequestView = '/docrequests/inbox/:id',
DocumentRequestTemplates = '/docrequests/templates’,
DocumentRequestTemplateNew = '/docrequests/newTemplate’,
DocumentRequestSent = '/docrequests/sent’,
DocumentRequestAccountRequests = '/docrequests/all’,

You can see there is a route path the for the page itself, others for each tabs, and even others for
states within these tabs.

Why is this helpful?

This allows us to constrain route paths when needed. For example, | can have a function that can
accept RoutePaths of a specific page (like document requests). | don't have to worry about
handling the other 50+ route paths that exist, only the document request route paths.

RouteParams

In the RoutePaths.ts file there are enums that end with RouteParams. These represent the
variables in route paths that have them. For example, for the path ' /docrequests/inbox/:id' there is a
variable name ":id". You can use DocumentRequestRouteParams.ld enum whenever you need to, so
you don't have to have magic strings anywhere. This is especially important when routing (see How
do | route to a specific location?).

Other enums

At the time of this writing, there is only one other type of enum. It is called SelectedDetail . It's
purpose is to be used in conjuction with the DocumentRoutePath.GoToNodeDetail
(/documents/node/:nodeld/:selectedDetail). The values of this enum are all the valid values that
can be used for the :selectedDetail variable.

There will likely be other enums that serve a similar purpose (and maybe even other purposes) and
feel free to add other enums and types to this file to make routing as clean as it can be.

How do | route to a specific location?

useRouting Hook

The main way to route to a specific location is with the useRouting hook. In a similar way to the
RoutePath type being composed of other enums, it is a hook that is composed of other hooks. Most

areas of the app have their own hook with all the logic for routing contained there. When actually
using the hook though, you don't have worry about that and can just import useRouting and use
what you need from it.

There are currently two ways to use the useRouting hook:

1. routeTo... functions
e Use these functions when you need to route directly to a specific area
o Example:
routeToDocuments();
e Some of these functions take parameters, like ids
2. getLinkTo... functions
e Use these functions when you need to grab a link to an area, maybe for use with
Component Library components

o Example:
<Card.Link tag={Link}

to={getLinkToMySettings()}>{t(NavMenuKeys.MySettings)} </Card.Link>
e You need to specify that the tag property is 'Link', and the to is where you call the
getLinkTo function.

useNavigate Hook

The majority of cases should be covered by the useRouting hook, but if you come across a case
where that won't work, you can still use the useNavigate hook:

e navigate(RoutePath.RouteWithoutVariable) - route that does not have a variable
e navigate(RoutePath.RouteWithSingleVariable.replace(SomeRouteRouteParams.para
mName, valueToReplaceVariableWith);
e navigate(
RoutePath.RouteWithMultipleVariable
.replace(SomeRouteRouteParams.parameNamel, paramlValue)
.replace(SomeRouteRouteParams.parameNamel, paramlValue)

How do | add a route?

e Add a new enum to the RoutePath type.

e In the canGoToRoute function in the useRouteValidator hook, add a case to the switch
statement to validate the logged in users permissions and features appropriately to make
sure they can navigate to this route.

e In the LayoutRoutes component, add a Route component for this specific route. Make sure

you only render the route if the logged in user has permission. For example:
{canGoToRoute(RoutePath.AuditLogs) && <Route path={RoutePath.AuditLogs} element={<AuditLogs
>} >}
e If needed (like on a page with tabs), make sure the component that you've chosen to
render when this route is navigated to, has been updated to handle this route.
o For examples of this, look at the code for any component that has tabs.

e Add a getLinkTo and routeTo function for the route you added
o If the route you added is its own new area, consider making a new hook for it within
the Routing folder and then make sure to add it to the general useRouting hook in
the return statement

Permission and Feature
Validation

useRouteValidator Hook

Any logic related to validating if a user can view a specific route (for example a page or even a tab
on a page) lives in this hook.

Most account feature and system permission checking happens in this hook.

This hook is used to validate if a specific route should even be rendered, if tabs on a page should
be show, if navbar or sidenav options should be show or hidden, and which features show up in the
account features flyout (to name some of the most common).

There a couple of functions in the hook to validate routes.

e canGoToRoute : checks to see if the logged in user can go to a specific route.
e canGoToSomeRoute : checks to see if the logged in user can go to at least one route in a set
of routes.

useAccountFeatureValidator Hook

Any logic related to validating if an account has certain features lives in this hook.
There are several functions to validate features on the logged in users accounts.

e accountFeaturesHavelLoaded : checks if account features have been loaded from the back end
and cached for quick lookup.

e hasFeatureOnAccount : checks to see if a specific account has a specific feature (or set of
features)

e hasFeatureOnSomeAccount : checks to see if any account has a specific feature (or set of
features)

e isESignatureFeatureAvailable: checks if a specific account has the eSignature account
feature or if the user is authenticated to docusign (either indicates that the eSignature
feature can be used.

useSystemPermissionsValidator Hook

Any logic related to validating if a user has certain system permissions lives in this hook.

There are several functions to validate system permissions the logged in users accounts.

e hasPermissionOnAccount : checks to see if the logged in user has specific system
permission(s) an a specific account.

e hasSomePermissionOnAccount : checks to see if the logged in user has any one of a set of
system permissions on a specific account.

e hasPermissionOnSomeAccount : checks to see if the logged in user has system permission(s)
on any of their accounts.

e systemPermissionsHavelLoaded : checks if the logged in users system permissions have been
loaded from the back end and cached for quick lookup.

Virtualization and Infinite
Scrolling

Virtuoso Library

We use a library called Virtuoso to do both virtualization and infinite scrolling of flat lists. | say '
flat lists' because we tried to use virtuoso in in our node tree component, but it had issues
rendering nested lists that used virtuoso, so we ended up not doing any virtualization in the node
tree and rolling our own infinite scrolling solution for it. However, we feel this use case is fairly
uncommon and recommend using Virtuoso whenever possible because it's a pretty simple APl and
does both virtualization and infinite scrolling.

Official Documentation can be found here.

Places using Virtuoso in our code include the FullTable component in the component library and
FailedUploads component in AtlantisFrontEnd.

Please note that you must supply a height for Virtuoso, or any virtualized list, to work because it
needs some kind of container to do its calculations.

https://virtuoso.dev/

Modals

There is currently a hook called useModal that we use to open modals in many places. This
hook has been deprecated. There is also a function named openModal in LayerConext that
has been deprecated. Please don't continue to use either of these approaches. Instead, use
the Modal component in the Nautilus Component Library and described in this article.

Storybook Docs can be found here

Bootstrap Docs can be found here

Introduction

We have a Modal component in the Nautilus Component Library that is built on top of the Bootstrap
Modal component. You can reference the Bootstrap documentation on Modals for any details on
how the modal works and the options available, as well as our Nautilus Storybook documentation
for the Modal component.

Toggling Modal Display

The IsHiddenState prop is used to control whether or not the modal is hidden or not. You can
pass in a react state that is returned directly from the useState hook.

Modal Content

There are three props that are used to set the content of the Modal, Header, Body, and Footer.
The props for each of these are union types. One type in the union allows you to pass in custom JSX
to display whatever you want in that section of the modal. The other is a simple type that has a
small number of properties to support common usage.

When custom JSX is passed to any section, it will be wrapped in a div with that section's
corresponding bootstrap class (i.e: modal-header, modal-body, modal-footer) to enforce modal
styling.

Toggle between modals

Bootstrap only supports displaying one modal at a time so you cannot stack them. You can see

bootstrap docs here for details on a clever way for toggling between modals when needed by
setting the data-bs-toggle and data-bs-toggle attributes on buttons in each modal.

https://getbootstrap.com/docs/5.0/components/modal/#toggle-between-modals
https://wonderful-wave-00ac5c610.5.azurestaticapps.net/?path=/docs/components-modals-modal--docs
https://getbootstrap.com/docs/5.0/components/modal

In the Nautilus Ul modal, footer buttons have a prop named altModalToShowOnClickElementid
that will set both data attributes accordingly and open the modal with the specified modal element
id when the button is cliicked.

