
Elastic Search
Elastic Search is the data store we use to efficiently index and search node related data.

Changing the Replica Count
Re-Indexing API
Aggregations
List Shard Sizes (and other details)
Force Merge
Search Shard Routing
Fix Watermark Errors (Flood-Stage)
LEGACY: ElasticSearch Backup/Restore from S3
LEGACY: Installing Elastic Search

Changing the Replica Count

PUT {index-name-here}/_settings

ElasticSearch Docs for this API can be found here

{
 "index" : {
 "number_of_replicas" : 1
 }
}

https://www.elastic.co/guide/en/elasticsearch/reference/current/indices-update-settings.html

Re-Indexing API

You can copy documents from one index to another by using the Reindex API.

This was useful during beta testing to create a new index with a different shard count and copy all
the documents to the new index, without going through the Atlantis-Search indexing process all
over again.

We could likely do this in the future when we want to scale to a larger tier and want to increase the
shard count. We would need to temporarily scale to a tier that has enough storage to duplicate the
index, but once we've reindexed, we could delete the original and scale back down to the desired
tier.

Example
POST _reindex?requests_per_second=-1&wait_for_completion=false

requests_per_second : setting this to -1 makes it so no throttling occurs
wait_for_completion : setting this to false makes it so the operation runs asynchronously.
(You want to do this)
routing : setting this to keep makes it so the _routing values stays the same as in the
source. We do use routing so you will want to make sure this is set.

ElasticSearch API Documentation can be found here

{
 "source": {
 "index": "node-index"
 },
 "dest": {
 "index": "node-index-1",
 "routing": "keep"
 }
}

https://www.elastic.co/guide/en/elasticsearch/reference/current/docs-reindex.html

Aggregations

Example: Average Length of File Content
We had a case where we wanted to see what the average length of the fileContent property was.
We were able to use aggregations to get statistics about the property including the count,
minimum length, maximum length, average length, and entropy using the string_stats
aggregation.

We used the API Console in Elastic Cloud to run the aggregation query.

Request
Method: POST
Path: node-index/_async_search?size=0
Body (see below)

Official ElasticSearch Documentation can be found here

We used the _async_search API because the query took so long to run. During this time
searches slowed to a crawl. We were running this at night so it wasn't a huge deal. If you
have an async search that is running too long and / or causing performance issues you can
stop the request by sending a DELETE call to _async_search/{async search id here}, and this
is detailed further below.

{
 "query": {
 "exists": {
 "field": "fileContent.wildcard"
 }
 },
 "aggs": {
 "message_stats": { "string_stats": { "field": "fileContent.wildcard" } }
 }
}

https://www.elastic.co/guide/en/elasticsearch/reference/current/search-aggregations-metrics-string-stats-aggregation.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/search-aggregations.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/async-search.html

Response
Initial Response Body

The request is running asynchronously, and you can monitor progress with the following request

Method: GET
Path:
_async_search/FjZFS3lJTnd0UTNla29TcnFFRnR5NncfT0NycU9EcnFRYjZqRkdTRFQwdi1PZzo
0NDY0MjA5NA==

{
 "is_partial": true,
 "is_running": true,
 "id": "FjZFS3lJTnd0UTNla29TcnFFRnR5NncfT0NycU9EcnFRYjZqRkdTRFQwdi1PZzo0NDY0MjA5NA==",
 "expiration_time_in_millis": 1716350043005,
 "response": {
 "hits": {
 "hits": [],
 "total": {
 "relation": "gte",
 "value": 0
 },
 "max_score": null
 },
 "_shards": {
 "successful": 0,
 "failed": 0,
 "skipped": 0,
 "total": 400
 },
 "took": 1031,
 "timed_out": false,
 "terminated_early": false,
 "num_reduce_phases": 0
 },
 "start_time_in_millis": 1715918043005
}

{
 "is_partial": true,

You can delete the search query (if it's running too long or causing other performance issues with
the following request

Method: DELETE
Path:
_async_search/FjZFS3lJTnd0UTNla29TcnFFRnR5NncfT0NycU9EcnFRYjZqRkdTRFQwdi1PZzo

 "is_running": true,
 "id": "FjZFS3lJTnd0UTNla29TcnFFRnR5NncfT0NycU9EcnFRYjZqRkdTRFQwdi1PZzo0NDY0MjA5NA==",
 "expiration_time_in_millis": 1716350043005,
 "response": {
 "hits": {
 "hits": [],
 "total": {
 "relation": "gte",
 "value": 10000
 },
 "max_score": null
 },
 "_shards": {
 "successful": 17,
 "failed": 0,
 "skipped": 0,
 "total": 400
 },
 "took": 215630,
 "timed_out": false,
 "terminated_early": false,
 "num_reduce_phases": 4,
 "aggregations": {
 "message_stats": {
 "count": 8880102,
 "min_length": 1,
 "max_length": 12175466,
 "entropy": 4.977113043941186,
 "avg_length": 12041.666635923777
 }
 }
 },
 "start_time_in_millis": 1715918043005
}

0NDY0MjA5NA==

List Shard Sizes (and other
details)
GET /_cat/shards?v&h=index,shard,prirep,state,store,node&s=store:desc

Force Merge

Additional Notes
We use the force merge API in the past, when we've had a very large account purged and needed
to free up disk space more quickly than letting the cluster clean it up on its own in the background
and have seen disk space free up by 10% or more.

We have only done this on one index at a time in the past.

There is an optional parameter called only_expunge_deletes that basically, when set to true, indicates
that you only want to free up disk space of deleted documents. If this is set to true, it seems that
you don't need to worry about turning off writes to the index while it is running.

If you do not set only_expunge_deletes to true, it is recommended that you turn off writes to the
index well the force merge task runs.

This could change over time, but at the time of writing, you can do this by turning off / disabling
the following function apps / specific functions

Turn off AtlantisSearch-Indexing function app
Disable TikaExtractComplete function in revver-textExtractionProcessing function
app
Disable OCRExtractComplete function in revver-ocrProcessing function app
Disable queue triggered functions in the AtlantisFileProcessing-
ExtractedTextManagment function app (this is probably overkill, but I have not
researched exactly with functions write to the index)

Official ElasticSearch documentation can be found here

https://www.elastic.co/guide/en/elasticsearch/reference/8.4/indices-forcemerge.html

Search Shard Routing

Additional Notes
If the way we are storing documents per account starts leading the shards that are way too big, we
could manage what shards different accounts are stored on in our own mapping table and specify
in our elastic search requests to store and read data from a specific shard by setting preference to
preference=_shards:{shard number here} .

Official ElasticSearch documention can be found here

https://www.elastic.co/guide/en/elasticsearch/reference/current/search-shard-routing.html

Fix Watermark Errors (Flood-
Stage)
https://www.elastic.co/guide/en/elasticsearch/reference/current/fix-watermark-errors.html

This occurs when a node disk size has exceeded 95% (or whatever you've set the threshold to)

https://www.elastic.co/guide/en/elasticsearch/reference/current/fix-watermark-errors.html

LEGACY: ElasticSearch
Backup/Restore from S3
Steps to restore an ElasticSearch
Snapshot from an S3 backup:
*make sure same version for less issues

1. Install S3 plugin
2. allow insecure settings (on local ElasticSearch instance)

a. open ProgramData -> Elastic -> ElasticSearch -> config -> jvm.options
b. edit the file and add the line "-Des.allow_insecure_settings=true" to the bottom.
c. restart the ElasticSearch service.

3. Register the S3 bucket as a snapshot repository
a. Do a PUT to "http://localhost:9200/_snapshot/s3_repository " with a body: {
"type": "s3",
"settings": {
"bucket": "elasticsearch-monitor",
"region": "us-east-1",
"access_key": "{access_key}",
"secret_key": "{key_secret}"
}
}

4. Create the snapshot
a. Do a POST "
http://localhost:9200/_snapshot/s3_repository/{snapshot_name}?wait_for_completion=tru
e " with a body:
{
"type": "s3",
"settings": {
"bucket": "efc-elasticsearch-export",
"region": "us-east-1",
"access_key": "{access_key}",
"secret_key": "{key_secret}"
}
}

http://localhost:9200/_snapshot/s3_repository
http://localhost:9200/_snapshot/s3_repository/%7Bsnapshot_name%7D?wait_for_completion=true
http://localhost:9200/_snapshot/s3_repository/%7Bsnapshot_name%7D?wait_for_completion=true

5. Register S3 repository with hosted ElasticSearch: Following this article or article2
a. Once you have the role arn and S3 access key and secret, do a PUT request to the AWS
ElasticSearch instance using Postman.
b. Postman has the ability to do a "Signed Request" which is important for this PUT
request to complete successfully. You do this by going to the Authorization tab, selecting
Type: AWS Signature. Enter the access key, and secret, region (probably us-east-1) and
Service Name (es).
c. The URL and body are as follows:
URL: https://{your url}.us-east-
1.es.amazonaws.com/_snapshot/s3_repository?pretty&verify=false
Body (JSON): {
"type": "s3",
"settings": {
"bucket": "efc-elasticsearch-export",
"role_arn": "arn:aws:iam::{your arn}:role/es-to-s3-repository-staging-role",
"region": "us-east-1"
}
}
d. Validate snapshot is available: GET "https://{yoururl}.us-east-
1.es.amazonaws.com/_snapshot/s3_repository/_all"
e. Restore the snapshot with a POST "https://{your_url}.us-east-
1.es.amazonaws.com/_snapshot/s3_repository/{snapshot_name}/_restore"

https://medium.com/krakensystems-blog/migrating-your-self-hosted-elasticsearch-to-aws-elasticsearch-service-a-detailed-guide-ff22efede5a3
https://docs.aws.amazon.com/elasticsearch-service/latest/developerguide/es-managedomains-snapshots.html#es-managedomains-snapshot-registerdirectory

LEGACY: Installing Elastic
Search

Install Using Docker

Taken from Elastic Search with Plugins in Docker

1. Download Docker Desktop (Windows): Docker Desktop
2. Create a Dockerfile. This file can be saved anywhere you choose. There is many ways of

doing this, but what needs to be done is to create a file that does not have an extension
on it and call it Dockerfile. One way is to open an editor(VS Code, Notepad++, Sublime
Text, etc) then save the file with that name and no extension. Sometimes you have to
save the name with quotes around it (exp. "Dockerfile").

3. Once file is created enter the following code into the Dockerfile:

FROM elasticsearch:6.8.23

RUN /usr/share/elasticsearch/bin/elasticsearch-plugin install --batch ingest-attachment

4. Open power shell and navigate to the file location of the Dockerfile. Then run the following
to build the image in docker:

docker build -t elasticsearch-ingest-attachment .

5. Next in power shell run the following to create the container and run for the first time:

docker run --name elastic-search-6.8.23 -p 9200:9200 -p 9300:9300 -e "discovery.type=single-node"
elasticsearch-ingest-attachment

6. Elastic search is now up and running. The only problem is it is running in power shell and
will stay up on the screen. To resolve this please close the power shell which will stop
elastic search. Then open Docker, in the container menu find the elastic search container

We don't currently support running ElasticSearch locally w/ the Atlantis Search
Solution. This article pertains to running ElasticSearch locally with our legacy
search solution. We have kept the article around because we may support running
elastic search locally in the future and this article would be a good starting point
for doing that.

https://internal.efilecabinet.com/Elastic%20Search%20with%20Plugins%20in%20Docker
https://www.docker.com/products/docker-desktop/

and hit the start button. Elastic search will be then good to go.

Note: This install of Elastic Search includes the Ingest add-on that is required for Rubex.

For Testing if it is up and running. Run the following code in power shell: curl -GET "localhost:9200"

The following will then display which shows it is up and running:

DEBUGGING:

Sometimes elastic search can get into readonly mode. You can tell if this has happened when you
can connect to elasticsearch successfully, but it fails to index or purge any new data. You can verify
this is the issue by checking the error messages in utopia, or in the docker elasticsearch logs you
can find this string.

To increase the max memory allocated to this container, run the following commands in
PowerShell:

{
 "name" : "64adb598c086",
 "cluster_name" : "docker-cluster",
 "cluster_uuid" : "_jyHQb0LTeSIJxenN4MO1g",
 "version" : {
 "number" : "6.8.23",
 "build_flavor" : "default",
 "build_type" : "docker",
 "build_hash" : "ef48eb35cf30adf4db14086e8aabd07ef6fb113f",
 "build_date" : "2020-03-26T06:34:37.794943Z",
 "build_snapshot" : false,
 "lucene_version" : "8.4.0",
 "minimum_wire_compatibility_version" : "6.8.0",
 "minimum_index_compatibility_version" : "6.0.0-beta1"
 },
 "tagline" : "You Know, for Search"
}

max virtual memory areas vm.max_map_count [65530] is too low, increase to at least [262144]

wsl -d docker-desktop

sysctl -w vm.max_map_count=262144

Stop the elasticsearch container and restart it.

NOTE:
If the database is still in read-only mode, run the following curl command from the docker terminal.

curl -XPUT -H "Content-Type: application/json" http://localhost:9200/nodebaseindexitemindex/_settings -d
'{"index.blocks.read_only_allow_delete": null}'

If this STILL doesn't work (or the command fails), download and unzip Kaizen.zip
Then, once unzipped run kaizen.bat, and connect to localhost elasticsearch, then delete the index
and re-run utopia to re-create the index.

It should work...

https://v953w.app.goo.gl/jWCx

